A method for determining the spring constant of cantilevers for atomic force microscopy

نویسندگان

  • Akihiro Torii
  • Minoru Sasaki
  • Kazuhiro Hane
  • Shigeru Okuma
چکیده

Cantilevers fabricated by means of micromachining techniques are usually used for atomic force microscopy. In this paper, the spring constant of an atomic force microscope (AFM) cantilever is determined by using a large-scale cantilever. Since the spring constant of the large-scale cantilever is calibrated accurately, the spring constant of the AFM cantilever is determined precisely by measuring the deflections of both cantilevers simultaneously using heterodyne interferometry. The slope of the force curve gives the spring constant of the AFM cantilever. It is not necessary to measure the dimensions of the AFM cantilever in the proposed method. Although this method is simple, the spring constant of the AFM cantilever is obtained accurately.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Calibration of colloid probe cantilevers using the dynamic viscous response of a confined liquid

Articles you may be interested in Adhesive-free colloidal probes for nanoscale force measurements: Production and characterization Rev. Improved in situ spring constant calibration for colloidal probe atomic force microscopy Rev. Accurate noncontact calibration of colloidal probe sensitivities in atomic force microscopy Rev. A calibration method for lateral forces for use with colloidal probe f...

متن کامل

Atomic force microscopy: loading position dependence of cantilever spring constants and detector sensitivity.

A simple and accurate experimental method is described for determining the effective cantilever spring constant and the detector sensitivity of atomic force microscopy cantilevers on which a colloidal particle is attached. By attaching large (approximately 85 microm diameter) latex particles at various positions along the V-shaped cantilevers, we demonstrate how the normal and lateral spring co...

متن کامل

Effect of cantilever geometry on the optical lever sensitivities and thermal noise method of the atomic force microscope.

Calibration of the optical lever sensitivities of atomic force microscope (AFM) cantilevers is especially important for determining the force in AFM measurements. These sensitivities depend critically on the cantilever mode used and are known to differ for static and dynamic measurements. Here, we calculate the ratio of the dynamic and static sensitivities for several common AFM cantilevers, wh...

متن کامل

Measuring the spring constant of atomic force microscope cantilevers: thermal fluctuations and other methods

Knowledge of the interaction forces between surfaces gained using an atomic force microscope (AFM) is crucial in a variety of industrial and scientific applications and necessitates a precise knowledge of the cantilever spring constant. Many methods have been devised to experimentally determine the spring constants of AFM cantilevers. The thermal fluctuation method is elegant but requires a the...

متن کامل

Sensitivity Analysis of Frequency Response of Atomic Force Microscopy in Liquid Environment on Cantilever's Geometrical Parameters

In this paper, the non-linear dynamic response of rectangular atomic force microscopy in tapping mode is considered. The effect of cantilever’s geometrical parameters (e.g., cantilever length, width, thickness, tip length and the angle between the cantilever and the sample's surface in liquid environment has been studied by taking into account the interaction forces. Results indicate that the r...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1996